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Abstract

A target recognition capability is described that
performs: color target detection, target type and
pose hypothesis generation, and target type verifi-
cation by 3-D alignment of target models to range
and electro-optical imagery. The term ‘coregis-
tration’ is introduced to describe target, range
and electro-optical (color and IR) sensor align-
ment correction. Online model feature prediction
using 3-D military vehicle models is demonstrated
for 3-D vehicle models. All phases of the recog-
nition cycle are shown on near-boresight-aligned
electro-optical and range imagery collected at
Fort Carson, Colorado. As a step toward inte-
grating constraints from Digital Elevation Maps
(DEM), an automated terrain feature prediction
and matching capability is demonstrated. This
terrain matching is used to refine DEM to ground-
looking imagery registration.

1 Introduction

The goal of this project has been the development
of new Automatic Target Recognition (ATR) al-
gorithms that are more robust with respect to
scene clutter, target occlusion and variations in
viewing angle. The heart of the approach is
to fuse range and electro-optical imagery (color
and/or IR) using global geometric constraints.
These constraints derive from known sensor, tar-

*This work was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) Image Understanding
Program under grants DAAH04-93-G-422 and DAAH04-
95-1-0447, monitored by the U. S. Army Research Office

get and scene geometry. This may be thought of
as model-based sensor fusion, and contrasts with
more traditional approaches that attempt to fuse
data based upon low-level cues only [20].

The roots of our approach lie in past alignment-
based object recognition research [41; 31; 8]. In
this line of research, the value of varying 3-D ob-
ject to sensor alignment during recognition has
been clearly demonstrated. While this paradigm
is popular in many domains, it is surprisingly ab-
sent from work on ATR. Instead, ATR has been
dominated by systems which employ fixed sets of
image space templates or probe sets: sets of tem-
plates span the cross product of target models and
sampled viewpoints.

Our multisensor target identification algorithm
goes beyond traditional alignment by using on-
line 3-D rendering to predict how target signa-
tures change as a function of target pose (3-D po-
sition and orientation), lighting and terrain occlu-
sion. This rendering component is coupled with a
novel optimization algorithm in order to find the
best target match. On a test suite of 35 image
triples: Range, IR and Color, the system correctly
distinguishes between an M113, M901, M60 and
pickup truck in 27 out of the 35 tests. Only one
other RSTA group has performed target identifi-
cation on this dataset, and they report that us-
ing a template approach on Range Imagery alone
they will reliably solve only 4 out of the 35 test
cases [32].

The geometrically precise multisensor identi-
fication algorithm is computationally demand-
ing. To reduce processing, focus-of-attention al-
gorithms are used to perform detection and sug-
gest possible target type and pose hypotheses.




Each of these upstream processes is itself a major
component of our project. The target detection
effort, led by the University of Massachusetts, has
demonstrated the ability to detect camouflaged
vehicles against similarly colored natural terrain.
The detection algorithm uses new non-parametric
classification techniques from the field of machine
learning. The target and pose hypotheses genera-
tion effort is being led by Alliant Techsystems and
the algorithm being used here is an adaptation of
their own mature LADAR ATR system.

While combined range and electro-optical (E-
O) data provides one valuable source of constraint
for ATR, digital elevation maps (DEM) provide
another. Scene context, as expressed in a DEM,
can be used to guide search for targets by sug-
gesting more or less likely regions of a scene to
examine. Terrain maps can also provide range-
to-pixel estimates for E-O sensors, provided that
the DEM has been accurately registered to the
E-O imagery. To use DEM constraints to great-
est advantage, an automated process must accu-
rately provide this registration. Qur project is
developing robust algorithms for performing such
registration and demonstrating these on SSV data
collected at the UGV Demo C site.

1.1 Review of Accomplishments

At the outset of the of the project, several mile-
stones were established. Below are high-level de-
scriptions of each and pointers sections in this
chapter where each is discussed.

Data Collection. Over 400 range, IR and color
images of military targets against natural ter-
rain were collected at Fort Carson, Colorado.
The imagery and documentation (7] has been
approved for unlimited public distribution
and is available through our website at
http://wuw.cs.colostate.edu/~vision.
(Section 2.3)

Target Detection Using Color. A real-time
target detection system which learns to dis-
criminate between natural terrain coloration
and military camouflage (both green and
brown) has been developed and demon-
strated running on the UGV programs vehi-
cles. In formal evaluation on the Fort Carson
Dataset, the system finds roughly 85% of all
targets. After recent training, the system has
performed even better running on the SSV at
the Demo C test site. (Section 2.4)

Target & Multisensor Visualization. Two
generations of interactive 3-D graphics

systems have been built to visualize tar-
get models in the context of multisensor
data. Visualization allows us to inspect
the progress and results of recognition
algorithms. The current system contains
over 50,000 lines of code and requires a Unix

workstation with Open-GL !. (Section 2.6.2)

Least-median Squares Multisensor Coreg-
istration. A new 3-D object pose determi-
nation algorithm simultaneously refines the
least-squares best-fit 3-D pose of a target
model as well as the sensor-to-sensor image
registration. This combined process of re-
fining pose and registration is called here
coregistration. A least-median squares ex-
tension makes the algorithm robust to out-
liers. Sensitivity analyses on controlled syn-
thetic data with known ground truth have
been performed and the algorithm has been
demonstrated on actual target model and
multisensor data features. (Section 2.9)

Range Probing Hypothesis Generation.

A mature ATR system for predicting the
target type and pose based upon boundary
probing has been adapted to provide target
type and pose hypotheses for subsequent
multisensor validation.  Tests on 35 of
the Fort Carson range images suggest the
system does not reliably predict the single
correct best hypothesis. However, with hand
tuning for close versus distant targets, the
correct vehicle type appears within the top
five hypotheses on 33 out of 35 images.
(Section 2.5 & Section 3)

Multisensor Target Identification. Our new
system takes target type and pose hypothe-
ses and refines these through integrated mul-
tisensor matching. It correctly identifies four
classes of vehicle on 27 out of 35 range, IR
and color image triples from the Fort Car-
son dataset. This system employs a sophis-
ticated search procedure to locally refine the
coregistration (pose plus sensor registration)
between target and sensors. The features
representing the target signature are dynam-
ically predicted and refined during matching
using 3-D graphics hardware. Thus the sig-
nature is adapted to match scene properties
such as lighting. In addition, feature predic-
tion uses occlusion cues in the range in order

! Additional detail on the visualization component of
this work appears in the paper ‘Visualizing Multisensor
Model-Based Object Recognition’ in the Appendix of this
book.




to modify target signatures for all three sen-
sors. This dynamic ‘occlusion reasoning’ is
a major advancement for ground-based ATR
and has enabled precise multisensor matches
to be recovered for terrain occluded targets.
(Section 2.6 & Section 3).

Terrain Feature Prediction and Matching.
A critical practical problem for the UGV has
proven to be the establishment of precise
(within several pixels) registration between
stored terrain maps and ground-looking im-
agery. A system for extracting terrain fea-
tures from both rendered terrain and live
video in real-time (under one second) has
been developed and delivered to Lockheed-
Martin for use in Demo II. In the lab, this
system is being coupled with an optimal fea-
ture matching system to demonstrate the fea-
sibility of automated registration refinement.
(Section 4)

2 The Multisensor ATR System

A three-stage multisensor ATR system has been
developed to test key innovations in multi-
spectral target detection and multisensor target
identification. The component technologies for
each of these stages are summarized here along
with results on imagery from the Fort Carson
dataset.

2.1 The Recognition Testbed

A series of major software components has been
brought together within a single testbed to test
both components as well as the end-to-end capa-
bilities of our ATR system. A summary diagram
of the system architecture is shown in Figure 1.
The inputs to the run-time system are sensor im-
ages from FLIR, LADAR and color sensors. Addi-
tional inputs come from off-line components that
provide vehicle model information, time-of-day
lighting, and decision-trees used for color-based
target detection. The 3-D vehicle models are re-
duced from their full BRL-CAD detail to simpler
3-D representations appropriate for matching. In
the future, the work on terrain maps described in
Section 4 will be made part of the core recognition
testbed.

2.2 The Alignment Approach to ATR

The Multisensor Target ID module in Figure 1
embodies the extension of the alignment-based
recognition paradigm to the ATR domain. At
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Figure 1: Overview of Recognition Testbed. The
on-line system takes in imagery, performs de-
tection, target type and pose hypothesis genera-
tion, and finally multisensor target identification.
The off-line support software performs BRL-CAD
model reduction, provides for training of the color
detection system, and provides a full interactive
3-D graphical user interface for monitoring the
multisensor identification system.

first, this might seem a simple transfer of a well-
understood paradigm from one application do-
main to another. However, such a view grossly
underestimates the particular sources of difficulty
and complexity inherent in ATR. To list just some
of these factors: typically image resolution is low,
targets viewed in color imagery are textured, in
FLIR target appearance is highly variable, and in
range imagery geometric form is often complex.
Also, while CAD models of targets are typically
available, they often contain excessive detail (6 to
12 thousand polygons). Terrain features in scenes
often introduce structured clutter and targets are
often partially occluded. These factors make the
direct application of current algorithms infeasible.

To overcome some of these difficulties, optical
imagery must be supplemented with other types
of scene information. A key tenet of our project
is that 3-D range data resolves many ambigui-
ties inherent in E-O imagery, and that E-O pro-
vides sources of constraint absent in the range
imagery. Therefore, alignment-based recognition
must couple together constraints from multiple
sensors and target geometry. We accomplish this
coupling with new algorithms that geometrically
align and match 3-D target models with both
range and E-O data. Through proper task for-
mulation, global geometric constraints associated




with known sensor and scene geometry are used
to perform model-based sensor fusion.

Geometric constraints can be grouped into two
categories: fixed intrinsic sensor properties, and
variable scene attributes. Usually, the intrinsic
parameters are calibrated off-line. However, vari-
able attributes must be computed in the field. For
example, the 3-D position and orientation of the
target relative to the sensors is not known a-priori.
Also, when separately mounted range and optical
sensors are used, exact pixel registration between
images can be expected to change. Thus, esti-
mates of 3-D object pose as well as image regis-
tration must be allowed to vary during alignment.
Thus, coregistration describes the process of si-
multaneously refining target-to-sensor-suite pose
as well as sensor-to-sensor image registration.

2.3 Overview of Our Multisensor

Dataset

At the start of the RSTA project, no three sen-
sor (Range, IR and Color) data set was available.
Therefore, a data collection effort was mounted by
Colorado State University, Lockheed-Martin, and
Alliant Techsystems. The collection took place
in the first week of November 1993 at Fort Car-
son. The Fort Carson Colorado Army National
Guard Depot made several vehicles available and
provided drivers who placed the vehicles on the
National Guard test range.

The data collection effort was highly con-
strained in terms of time, resources, vehicles and
terrain. These limitations not withstanding, over
400 Range, IR and Color images were collected
and this dataset has served as the primary dataset
for all algorithm development and testing in this
project. The Fort Carson data has been cleared
for unlimited public distribution and Colorado
State maintains a data distribution homepage
(http://www.cs.colostate.edu/~vision). To
accompany the data, there is a 50 page report [7]
describing each image, vehicle array, and ancil-
lary information such as time of day and weather
conditions. Additional information on sensor cal-
ibration may be found in [33].

The Fort Carson data meets all of our project’s
basic needs for algorithm development and test-
ing. Specifically, it includes Range, IR and Color
imagery for military vehicles positioned in natural
terrain. The Alliant Techsystems LADAR used
to collect range data generates 24 by 120 pixels
with a 3 by 5 degree field of view. To simulate
the nominal 1 foot per pixel range called for in
the planned RSTA LADAR, vehicles were placed
about 400 feet from the sensors at Fort Carson.

Modestly wide angle lenses were used with the
FLIR and color cameras so that ‘pixels on target’
values for these sensors would also be comparable
to those expected in the 0.5 to 1.0 kilometer range
using the RSTA sensor suite .

2.4 Recognition Stage 1: Detecting
Targets in Multi-spectral Imagery

For the first stage of processing, a new machine
learning algorithm [14] is applied to the prob-
lem of detecting camouflaged targets in multi-
spectral (RGB) images. The goal of this module
is not to identify the type or position of a tar-
get, but simply to detect where a target might
be present, and to pass the resulting image chips
(or “regions of interest” - ROIs) to the hypothe-
sis generation module (which selects the target’s
type and approximate position) and eventually
the coregistration matching module (which ver-
ifies the target type and refines the position es-
timate). Thus the goal of the color-based tar-
get detection module is to serve as a focus-of-
attention mechanism that directs the system’s
resources toward parts of the image that con-
tain potential targets. It should also be noted
that although this work was designed for work
on RGB images, the general approach is appli-
cable to any multi-spectral image source, includ-
ing multi-band IR or polarimetric imagery [39;
29].

2.4.1 Color Complements IR

In most ATR systems, targets are detected in 3-
5 micron infra-red (IR) images. IR images have
the advantage over color images (and many non-
visible spectrums) that they can be used in either
day or night operations, and that thermal signa-
tures are comparatively difficult to hide (assum-
ing the engine is running). By way of comparison,
color images can only be acquired during the day,
and any target detection system that uses them
must be prepared to detect camouflage, an old
but still very effective countermeasure.
Consequently, the goal of this project was not
to develop a color-based target detection system
that would supplant IR-based systems. Quite
the opposite, our goal was to develop a color-
based target detection system that would comple-
ment (and be used in conjunction with) existing

“The original plan for the RSTA system included a
LADAR range sensor with a nominal one foot-per-pixel
resolution at a range of 1,000 meters




IR systems. Although generally useful, IR im-
ages exhibit certain problematic characteristics.
The thermal properties of so-called “cold” targets
whose engines are not running are difficult to pre-
dict, because their temperature (relative to the
background) is a function of their recent history.
If they are significantly warmer or colder than
their background then they may be detected in
IR images, but at times they may approximately
match the background radiance and become dif-
ficult or impossible to spot in IR images. In ad-
dition, sunny days reflect solar thermal energy in
the 3-5 micron range, creating false alarms and
obscuring true targets in 3-5 micron IR images.
The problem with reflected solar energy on
sunny days is one reason color detection comple-
ments IR. Color detection typically succeeds and
fails independently of IR. For example, just when
3-5 micron IR sensors encounter their biggest
problems on sunny days with lots of reflected ther-
mal radiation; color-based systems are at their
best. More generally, while IR systems have trou-
ble with targets whose engines are not running,
color-based systems are unaffected by such ther-
mal properties. Conversely, color-based systems
are useless at night, when 3-5 micron IR systems
are at their best due to low background (ther-
mal) radiation. There is one other good reason
not to neglect color information: it is essentially
free. Color cameras are by far the cheapest imag-
ing sensors available, and many ATR systems al-
ready have color cameras on-board to aid human
operators in verifying targets before firing.

2.4.2 Technical Issues

Given the reasons provided above, the ability to
detect targets in color images is a potentially use-
ful complement to IR sensors if an effective color-
based detection system can be developed. The
technical issues that must be addressed in order
to build such a system are 1) the ability to recog-
nize camouflage and 2) the ability to compensate
for changes in apparent color due to changes in
illumination, distance and viewing geometry.

Camouflage attempts to match the color and
texture of a target to that of the background. For-
tunately, the “background” color of the world is
not a constant but rather changes daily, so that
there is always a slight color distinction between
a camouflage pattern and the true background;
the target detection system we developed works
by exploiting this fine distinction. This task is
made easier by the multi-colored nature of most
camouflage patterns — even if one color exactly
matches a significant portion of the background,
it is unlikely that the others will.

The more difficult issue is the variation over
time of the apparent color of an object under nat-
ural lighting. The color of daylight changes as a
function of the sun angle in the sky, which in turn
depends on the time and location of the image.
Since the apparent color of a target in an image
is a combination of the surface color of the ob-
ject and the color of the illuminant, the apparent
color of targets changes with the daylight. This
situation is further complicated by the observa-
tion that daylight is actually a combination of two
distinct illuminants: direct sunlight (which tends
toward yellow) and ambient skylight (which tends
toward blue). The apparent color of a target de-
pends on the ratio of sunlight to skylight falling
on the surface, and therefore on the orientation
of the target relative to the sun. Finally, weather
conditions such as clouds and haze cause further
changes in the apparent color of targets, includ-
ing an apparent blue-shift as a function of target
distance.

Attempts at color-based target detection using
more traditional parametric classification tech-
niques can be expected to fail. These traditional
techniques would model variations in apparent
color of a target as Gaussian noise around a “true”
apparent color. Modeled in this way, the varia-
tions in apparent color will be much larger than
the small distinctions between the color of cam-
ouflage and the color of the background.

Fortunately, shifts in the apparent color of tar-
gets are not random; there is a limited range of
colors that natural daylight can assume[34], even
given various ratios of sunlight to skylight, and a
limited blue-shift created by atmospheric humid-
ity. If we limit ourselves to a single sensor, there-
fore, we find that the apparent color of any single
surface in outdoor images forms a continuous re-
gion in three-dimensional (RGB) color space (or
a set of continuous regions if the object is mul-
ticolored, as are camouflaged targets.) Although
we do not have sufficient information (i.e., about
humidity) to predict the exact color of a surface
in an outdoor image, we can fit a decision surface
to the relatively smooth region of apparent colors
that a target can assume.

We therefore train a non-parametric classifier
to separate areas of color space that might be
the image of the target under ‘normal’ conditions
from those that cannot. Although such a clas-
sification scheme will always produce some false
positives, it is very useful as a focus-of-attention
mechanism to limit further processing by down-
stream recognition algorithms. Every image pixel
can be classified as potential target or not ac-
cording to whether it lies within the confines of
the learned color region. The result is a binary




region-of-interest image that marks all the pixels
that lie within the object’s color space; the target
pixels in the binary images are then grouped to
produce regions of interest (ROIs) around the tar-
gets. Examples are shown in Figure 2 (see color
plates). This allows the system to use an RGB
lookup-table for classification, enabling it to oper-
ate in almost real-time on inexpensive commercial
hardware.

2.4.3 Multivariate Decision Tree Learning

The non-parametric classification technique we
use is a multivariate decision tree (MDT) [14].
MDTs are a variant on traditional univariate de-
cision trees [46] (a.k.a. regression trees[13]), in
which a feature space is divided by selecting the
feature and threshold value that best divides the
target class from the background. This creates
two feature subspaces, which are then recursively
divided by another feature and threshold value,
until each subspace contains samples that all be-
long to the same class (i.e., target or background).
Geometrically, one can envision a univariate deci-
sion tree as a set of hyperplanes that successively
divide the feature space into smaller and smaller
regions, until each region contains elements of
only one class.

The problem with traditional decision trees is
that they divide the feature space by selecting a
single feature and threshold, implying that the
hyperplanes must be parallel to one of the fea-
ture axes. Multivariate decision trees recursively
divide the feature space using the maximally sep-
arating hyperplane, regardless of its orientation.
(This also implies that MDTs are impervious to
linear transformations of the feature space, so
that, for example, it makes no difference whether
the data is presented in RGB or YIQ color space.)
Another way of describing MDT's is that they fit
a piecewise-planar function to a decision surface
in a 3-D feature space.

It should be noted that other non-parametric
classifiers could also be used for this task, includ-
ing back-propagation neural networks. However,
as discussed in [15], the decision surfaces for the
apparent color of physical objects in an outdoor
scene are well-described as piecewise planar func-
tions in 3-D, and MDTs are therefore appropriate.
Neural networks search for decision functions in
higher-dimensionality function spaces, and there-
fore require more training instances to converge
to a similarly reliable answer for this problem.

2.4.4 Operating Scenario

It is assumed that training imagery is obtained
prior to a fielded mission, and based upon this
training data the system learns to discriminate
between color values produced by camouflaged ve-
hicles and values produced by background terrain.
Using the multi-variate decision tree learning al-
gorithm discussed in the previous section, the re-
sult of training is a color lookup table (LUT) in-
dicating, for each possible RGB color pixel value,
whether it is more likely to be produced by a tar-
get or background.

In fielded operation, the system performs real-
time color lookup on all pixels coming in and clas-
sifies them as target or background. Then, a re-
gion of interest (ROI) extraction process sums re-
sponses over fixed sized windows in the image and
extracts ROIs: one ROI for each local maximum
over a minimum threshold. When integrated with
the RSTA package on the UGV, the results of the
color detection were combined with those of a tra-
ditional FLIR detection algorithm.

Perhaps the most important factor in evaluat-
ing the usefulness of color detection concerns the
degree to which training generalizes to variations
in field conditions. The current system, using a
single LUT, has been demonstrated to generalize
across times of day, lighting conditions, weather,
and vehicles. Results using the algorithm both on
the vehicle and in the laboratory are discussed on
the next two sections.

2.4.5 Experience Running on SSV-B

Before we look at evaluations of the color system
conducted in a laboratory setting, let us briefly
describe our experience in the field. Because of
worries about reflected thermal radiation in 3-5
micron IR images at the Colorado Demo C site
in July, the MDT target detection system was se-
lected to run in conjunction with IR-based target
detection as part of the RSTA package. After a
significant software integration effort, the MDT
system was finally integrated and debugged on
board SSV-B in June, 1995.

On Tuesday, June 13, a handfull of training
images were collected using this vehicle, and the
following morning 14 of these images (3 indicat-
ing typical background colors and 11 showing ve-
hicles) were used to train a color look-up table
(LUT). Using this LUT, the system was tested
from 1 to 5 PM on 51 new images. The results
from these test are presented in Table 1. The
51 images included targets that were not in the
training data, had both brown and green camou-
flage, and were viewed from vantage points differ-




Table 1: Detection Statistics on 51 Demo C Test
Images. Training of the color detection system
was performed using images collected the previous

day. No true target was missed in this test.
Test Data Set, 1 - 5PM, June 14, 1995
Total Number of Images | 51
Target Types | b
Instances of Green Camouflage | 34
Instances of Brown Camouflage | 14
Missed Targets - False Negatives
Target Instances | 48
Targets Found | 48
Targets Missed | 0
False Negative Rate | 0.0 (0/48)
False Detections - False Positives
Total Number of Detections | 766
Detections True | 48
Detections False | 718
False Positive Rate | 0.94 (718/766)
Detection Statistics Per Image
Minimum Detections | 3
Maximum Detections | 41
Median Detections | 13
Mean Detections | 15
Standard Deviation of Detections | 9.5

ent from those in the training data.

The key result was that over the 4-hour period,
under both cloudy and sunny conditions, viewing
four different targets from two different vantage
points, the system never missed e target. This
first field test result was positive beyond our ex-
pectations. While perfect performance such as
this is not a realistic expectation in general, it
argues strongly for the merits of our approach.

Tight timing constraints associated with
scheduling of SSV-B leading up to Demo C pre-
vented further field testing or training. Conse-
quently, there are no systematic results suggest-
ing how performance changed with the changing
terrain conditions. This is a major factor for the
Denver site, where from June to July the natu-
ral grasses die and the predominant terrain color
changes from green to brown. On the occasions
in late July when the color detection system was
run, it performed poorly compared to June. This
is not surprising given the lack of re-training to
account for seasonal changes.

Because the system was tuned to work in con-
junction with a FLIR-based detection system, a
high false positive rate was considered acceptable
as a way of reducing the chance of missed targets.
Observe the high false alarm rate in Table 1. To
illustrate how these detection ROIs appear, the
ROIs found for a typical image from the June

tests at the Demo C site are shown in Figure 2a
(see color plates). The summed response produc-
ing these ROIs are shown in Figure 2b (see color
plates). Because each ROI is relatively small,
even for those images with high numbers of de-
tections, the color detection algorithm is focusing
attention on a very small percentage of the total
image.

2.4.6 Formal Lab Evaluation

The color focus-of-attention system for ATR has
been formally evaluated on the Fort Carson data
set, both by the authors and independently by
Ted Yachik of Gilfillan Associates Inc. (LGA).
Over 100 color images of military targets taken
on 35mm film and then digitized onto Kodak CD
were used in this evaluation. In [15], the authors
evaluated the system at both a pixel and region-
of-interest level. At the pixel level, it correctly
identified target pixels 53.4% of the time and
background pixels (which are much more com-
mon) 97.5% of the time, albeit with a high de-
viation from image to image. (The SD was 10.4%
for target pixels and 1.6% for background.) In-
terestingly, this level of pixel-level performance
was enough for very impressive region-level per-
formance: the system identified 109 out of 112
targets with a total of 44 false alarms.

Independently, Ted Yachik evaluated the color
FOA system on the Fort Carson data, using a
slightly different sampling methodology for select-
ing training and test images, and a slightly differ-
ent set of algorithm parameters. Although he did
not analyze his results at the pixel level, his re-
sults at the region-of-interest level were roughly
compatible: MDT found 49 out of 56 targets
(87.5% of targets) while generating an approxi-
mately 6.5 false alarms per frame.

Subsequent to these initial evaluations, the au-
thors set out to determine the optimal parame-
ter settings of the MDT algorithm. In particu-
lar, they investigated the threshold used by the
final step that converts the binary classification
image into a selected set of ROIs. (This thresh-
old determines what percent of the pixels in a
window must be classified as target before a ROI
is extracted.) As shown by Figure 3a, thresholds
of above 70% caused the system detection rate
(i.e., targets found) to decrease without signifi-
cantly decreasing the number of false positive re-
sponses (i.e., false alarms). Conversely, threshold
settings below 70% cause an increase in false pos-
itives without a significant decrease in false nega-
tives. As a result, the 70% threshold was deemed
optimal for this data set, and the false positive
and false negative rates at this setting should be




considered indicative of the current state of the
system.

One technical point about the evaluations
above should be discussed. Since the MDT
system merges overlapping ROIs (i.e., overlap-
ping detection rectangles), and because it is not
given any depth information about the scene from
which to infer target distance and therefore ap-
proximate target size, MDT returns ROIs of vary-
ing sizes. Both the author’s original evalua-
tion [15] and the LGA evaluation simply counted
the number of true and false ROIs detected, and
therefore the system was evaluated less harshly if
it returned one large false positive region than if
it returned two smaller ones, even if the sum of
the areas of the smaller regions was less then the
single large region.

In the context of a focus-of-attention mecha-
nism, such an evaluation is flawed. If the system
returns one large ROL, it is forcing the subsequent
stages of the system to search a larger portion
of the scene than if it returns two smaller ROIs.
Consequently, when calculating the ROC curve
we refined our study to measure false positives as
a percent of image rather than a count of ROIs.

Another measure of MDTs effectiveness as a
focus-of-attention mechanism can be found in its
ability to filter out data. In Figure 3b we mea-
sure the percent of image data passed through
to later stages of processing as an ROI (whether
a target or a false positive) as a function of the
ROI threshold discussed above. At the recom-
mended 70% threshold, MDT filters out over 99%
of the data, leaving the subsequent hypothesis
generation and coregistration matching modules
to search less than 1% of the image.

More evaluation of MDT is clearly needed.
Both of the studies above were based on the
same set of 3bmm images. Evaluations on more
data sets, including data sets of CCD images, are
needed. The system is available for such tests,
but color image sets of military targets from a sin-
gle sensor are currently unavailable. (The Sept.
1994 Lockheed-Martin data set is not appropriate
for this purpose because the color images were
taken with an auto-white balancer, which effec-
tively changed the sensor characteristics from im-
age to image.) An evaluation of the color classi-
fication system in a non-military context is cur-
rently being carried out by UMass and General
Motors.

2.4.7 Future Issues: Color Calibration
and Portability Between Sensors

Two technical issues are still unresolved with re-
gard to the practical use of color as an FOA mech-

anism for ATR. The first is sensor independence.
The current system assumes that all training and
test images are taken with a single sensor, an as-
sumption that does not fit well into military sce-
narios. We believe that this assumption can be
removed if the color transformation between one
sensor and another is known, essentially by trans-
forming the borders of the decision surface. How-
ever, this is an untested hypothesis.

The second issue is the effective use of contex-
tual information. Much of the variance in the
apparent color of a target is the result of con-
textual factors that may be known, such as the
time and location where the image was taken, the
weather conditions, and/or the approximate dis-
tance to target. Such factors should allow us to
restrict the expected appearance region in color
space when they are known. We are currently
collecting samples of natural illumination under
different sun angles and weather conditions, with
the aim of using this information to improve clas-
sifier performance in the future.

2.5 Recognition Stage 2: Hypothesiz-
ing Target Type and Pose

The multisensor target verification algorithm pre-
sented in Section 2.6 is powerful in terms of its
ability to relate target model features to multi-
sensor image features under widely varying target
pose and image registration estimates. The al-
gorithm is also very computationally demanding.
To limit processing time, we use a less demanding
algorithm to generate target and pose hypothe-
ses. Therefore, by reducing the number of possi-
bilities to examine during verification, processing
time is reduced. While any number of algorithms
might fill this role, including geometric hashing
techniques [1], we have chosen to use an existing
boundary probing algorithm [11] developed by Al-
liant Techsystems.

2.5.1 Range Boundary Probing

Alliant Techsystem’s LADAR Recognition Sys-
tem (LARS) has demonstrated state-of-the-art
target identification performance on hundreds of
frames of both real and synthetic imagery. The
LARS suite, summarized in Figure 4, uses a
non-segmenting model-based approach, which ef-
ficiently exploits both the 2-D (boundary match-
ing) and 3-D (surface matching) shape informa-
tion contained in LADAR signatures. Templates
are derived from BRI models of the expected
target set, therefore no training imagery is re-
quired. Since LARS does not perform segmenta-
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Figure 3: Target Detection Algorithm Performance on Fort Carson Images.

tion, it avoids information loss and provides ro-
bust performance in low SNR (Signal to Noise
Ratio) scenarios, an important consideration for
low LADAR visibility conditions. In past tests
on Tri-service LADAR data, LARS consistently
attained target identification performance in the
mid-to-upper 90% range.

As shown in Figure 4, LARS first processes the
2-D signature information. The off-line system
generates a set of templates consisting of a list
of probe points. Each probe point is designed to
test for a discontinuity along the desired target
boundary. Applying a probe to an image requires
only a simple test to make sure the pixels at ei-
ther end of the probe are greater in depth than
some threshold. The likelihood of a match for
each template is based on the number of passing
probes in relation to the total number of probes in
the template. This 2-D boundary matching pro-
cess is referred to as BICOV (Boundary Interval
Coincidence Verification).

BICOV operates on individual absolute range
images corresponding to pre-cued ROIs. The BI-
COV output is an ordered list of the most likely
target hypotheses at a specific pose, paired with
a likelihood confidence ratio. In this project, the
top hypotheses are passed onto the multisensor
verification module.

In addition, the LARS system also contains a
3-D surface matcher (known as SUMMIT), which
exploits the topography of a target’s surface. The
internal separation of the LARS matching stages
is done primarily to achieve greater computa-
tional efficiency. A-priori knowledge of target
class and aspect (as provided by BICOV) greatly
constrains the 3-D surface matcher search space
and simplifies the SUMMIT algorithm complexity
as well. Since we are concerned with target hy-

pothesis generation, we use only the more efficient
BICOV algorithm.

When the existing LARS system is run in a
stand-alone mode, both boundary and surface
matching is performed and a certainty accrual
mechanism is used to combine the BICOV and
SUMMIT match scores. It is worth noting that
this is an example of a weaker form of fusion,
since the accrual mechanism does not actually
couple the geometric constraints from bound-
ary and surface information in a single geomet-
ric measurement process. Put simply, the two
processes might both return high scores for a
case where surface and boundary are mis-aligned.
This decoupled fusion is in sharp contrast to the
multisensor verification module presented below,
for which geometric consistency is maintained
through a single consistent manipulation of the
multisensor and target geometry.

2.5.2 Avoiding Exhaustive Probing

Boundary interval probing algorithms suffer from
a problem common to most all template match-
ing (4] approaches: exhaustive search in an ex-
plosive space of probes/templates is impractical.
What is needed are control strategies to select
probes only when they are likely to convey mean-
ingful and helpful information, i.e., when their
respective scores will be high. Past work on
this general problem has developed hand-coded
heuristics for avoiding exhaustive probing [11] and
at least one algorithm has developed probe hier-
archies [12] to control probe use.

In a recently initiated joint project with Pro-
fessor Charles Anderson, also at Colorado State
University, we have begun to explore the use of
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a Neural Network (NN) as a device for efficiently
selecting which probes to apply and when. While
there is little new about using a NN in the context
of ATR [59; 17; 22; 35; 45, what is novel about
our approach is that the NN is being used primar-
ily as a control mechanism rather than a pattern
classification tool.

The goal is to teach a relatively compact and ef-
ficient NN to predict the responses generated by
a large set of probes applied to a given window
in an image. The NN is being trained to learn
a clear and explicitly defined mapping: the map-
ping from image pixel values in the image win-
dow to the probe score generated by a boundary
interval probe. Since exhaustive probing is the
default, the NN may be trained in a supervised
fashion simply by ‘watching’ exhaustive probe ap-
plications.

A proof of concept system has been tested on
" 5,400 probes developed for three of the vehicles
(M60, M113 and pickup truck) in the Fort Car-
son Dataset. A two layer NN has been trained
on synthetic LADAR data generated from BRL-
CAD models and then tested on 15 Fort Carson
LADAR images. The NN reliably predicts the top
25 out of 5,400 probes to apply at any given pixel.
After only 10 training epochs over synthetic data
the hybrid neural network approach was shown

to perform virtually equivalent to the brute-force
apply-all-probes technique on the real data im-
agery. The NN learning converges quickly, sug-
gesting that these mapping are linear and there-
fore not difficult to learn. Of key importance,
even though it is a statistically uncommon event
for probes to return a high score, the learning is
generalizing to capture these cases.

The most significant result relates to the run-
time savings using the NN to selectively apply
probes. Running on a Sparc 10, it takes almost 24
hours to apply all 5,400 probes to all the LADAR
pixels in the dataset.. In contrast, running the NN
and the resulting 25 best probes across the takes
roughly 2 hours. Both these run-times are long,
and it must be stressed these results are for a new
research system with no optimizations. The next
phase in this work will be to tie this learning into
the actual LADAR probing system developed by
Alliant Techsystems.

In this very first pass at this approach, it ap-
pears the NN reduces run-times by an order of
magnitude. It is not unreasonable to think much
greater savings are possible. Work on this project
will clearly be expanded and continued. One such
extension will be to switch from range to E-O data
using registered DEM data for range-to-pixel esti-
mates. This extension will also exploit the DEM




to ground-looking imagery registration work pre-
sented in Section 4. Without such registration,
probing on E-O data is infeasible.

2.6 Recognition Stage 3: Multisensor
Target Identification Using Coreg-
istration

This section introduces the target identification
system that fuses Range, IR and Color imagery
onto the 3-D target model and thereby makes a
determination as to the true type and pose of the
target. To begin, the concept of coregistration is
carefully explained, followed by a description of
the 3-D visualization environment developed for
the project. Then the two key ideas of multisen-
sor matching are explained: on-line model feature
prediction and iterative search through the space
of globally consistent relationships between sen-
sors and target. This section concludes with a de-
scription of our recently developed occlusion rea-
soning component and three matching examples
from the Fort Carson dataset. A full evaluation
of the target identification system is presented in
Section 3.

2.6.1 What is Coregistration?

Appearance of 3-D object models varies with
viewpoint, and pixels from multiple sensors typ-
ically are not in a one-to-one correspondence.
Knowledge of sensor parameters and relative sen-
sor positions can provide moderately accurate es-
timates of the pixel-to-pixel registration. How-
ever, small variations in relative sensor position
can lead to significant mis-registration between
pixels. This is of concern when matching ob-
jects, such as targets, which are small in terms
of absolute image size. To get around registration
problems and 3-D variations in appearance, ATR
systems commonly assume sensor registration is
exactly known or determined using low-level cor-
relation. Variation in 3-D appearance is typically
accounted for by sampling expected viewpoints to
produce a set of templates represented in image
space.

Our approach is different. Rather than assum-
ing perfect registration obtained prior to match-
ing object models or building a suite of viewpoint
specific templates, we have developed new meth-
ods to simultaneously refine alignment between
sensors and 3-D object models. This process re-
fines the pose (position and orientation) estimate
of the target model relative to a sensor suite as
well as the sensor-to-sensor alignment from which
the sensor registration is derived.

In the general case, an entire family of coreg-
istration problems can grow out of different as-
sumptions regarding the relative placement of the
sensors. At one extreme, if sensors are assumed
to be perfectly registered, then coregistration de-
volves into sensor to object pose computation. At
the other extreme, if sensors move freely and in-
dependently, then there is no coupling and the
result is an independent sensor pose problem for
each sensor. The specific problem of interest in
the context of RSTA is that of near-boresight-
aligned sensors.

A detailed study of different sources of un-
certainty in alignment for near-boresight-aligned
sensors appears in [33]. Briefly, a useful heuris-
tic falls out of this study: over small rotations
and restricted depth ranges, sensor-to-sensor ro-
tation may be approximated with simpler co-
planar sensor-to-sensor translation. This approx-
imation is illustrated for two sensors in Figure 5.
Figure 5a illustrates the 3-D geometry of an ob-
ject, a FLIR or Color sensor and a LADAR sen-
sor. The sensors, together, are free to rotate and
translate relative to the object. The sensors are
constrained to permit only translation in a com-
mon image plane. These 3-D constraints permit
translation of FLIR or color images relative to
LADAR images as illustrated in Figure 5b. In
all the coregistration work developed below, this
co-planar translation constraint between sensors
is imposed.

2.6.2 The Testbed Visualization Compo-
nent

An interactive 3-D interface has proven essential
to visualize and inspect relationships between 3-D
object models and sensor data. Two generations
of interactive 3-D graphical user interfaces have
been developed under this project [26; 25; 54].
Figure 6 (see color plates) shows a sampling of
views from our original RangeView system, and
it provides a visual overview of the data, object
models, and relationships of interest in our work.
A FLIR image of an M60 tank is shown in the up-
per left corner of the figure. The thermal readings
have been given a color coding in which hotter,
or higher value samples are red, and colder, lower
value samples are blue. The next frame shows the
same thermal information texture mapped onto
the range data. The subsequent two panels show
similar information for the color image. The right
column shows the CAD model visualization capa-
bilities of RangeView. The M60 model can be
rendered in the scene along with the range infor-
mation. The user has the ability to interactively
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modify the viewpoint to gain a better understand-
ing as to how the range features match to the
model information.

While RangeView used the LADAR coordinate
system as the central reference frame, its succes-
sor ModelView uses the 3-D target model frame.
Figure 7 graphically shows how the various refer-
ence frames relate via the given transformations.
Each of the boxes represents a unique reference
frame. At the center is the canonical representa-
tion: the model coordinate system. Each arc in
the graph represents a mapping from one coordi-
nate system to the next. All of the M transforma-
tions are mappings between 3-D reference frames
and are invertible.

ModelView is primarily used to visualize rela-
tionships between target models and sensor data.
However, it also supports combined visualization
of range and E-O data. In ModelView, the sen-
sors themselves are not iconically represented. In-
stead, changes in 3-D relationships between them
are expressed through visual overlays of one type
of sensor output on another. A user of ModelView
will typically create multiple windows showing
different types of model and sensor data displays.
Examples of such screen visualizations, as well as
a more detailed description of the ModelView sys-
tem appears in the Appendix of this book.

2.7 Interleaving Feature Prediction
and Multisensor Target Matching

The search process developed for coregistration
matching uses an iterative generate-and-test loop
(Figure 8) in which the current coregistration hy-
pothesis, denoted as F, is used to predict a set of
model features which are, in turn, used in an error
evaluation function. A neighborhood of moves is
then examined and the best move, the one with
the lowest error, is taken. The features are re-
generated for the new coregistration estimate and
the process continues. The three key elements in
this process are: feature prediction, match evalu-
ation, and local search. Each of these elements is
described below.

2.7.1 On-line Model Feature Prediction

Highly detailed Constructive Solid Geometry
(CSG) models of target vehicles are available in
BRL-CAD format [58]. We have already devel-
oped algorithms to convert these models to a level
of detail more appropriate for matching to the
given sensor data [53; 52]. Another system, sum-
marized here and fully described in [42], has been
developed to extract edge and surface information
from these models.
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The feature prediction algorithm renders the
vehicle using the current pose and lighting esti-
mates to infer which 3-D components of the tar-
get will generate detectable features in the spe-
cific scene. Each rendered 3-D surface is given a
unique tag and the resulting image carries precise
information about surface relationships as seen
from the hypothesized viewpoint. From this infor-
mation, the feature prediction algorithm identifies
those elements of the 3-D model that generate the
target silhouette. Prediction also takes account of
lighting from the sun to identify significant inter-
nal structure.

For range imagery, sampled surfaces are ex-
tracted from the 3-D model using a process that
simulates the operation of the actual range sen-
sor. The target model is transformed into the
range sensor’s coordinate system using the initial
estimate of the target’s pose, and rays cast into
the scene are intersected with the 3-D faces of the
target model. The same rendering step used to
predict optical features is used to filter the num-
ber of visible features for this range feature ex-
traction algorithm.

2.7.2 Match Evaluation

The goal of the search process is to find an opti-
mal set of coregistration parameters based upon
measures of fidelity between target model features
predicted to be visible and corresponding features
in the optical and range imagery. This measure
of fidelity is expressed as a match error, which is
lower for better matches. This match error may
be written as:

Em(F)>0 FerK (1)

The argument, F, represents the coregistration
of the sensors relative to the model. For a sen-
sor triple of IR, color and range, F € R with
6 degrees-of-freedom (DOF') encoding the pose of
the sensor suite relative to the target; 2 DOF en-
coding the co-planar translation of each optical
sensor relative to the range sensor.

The error, Eap(F), is divided into three
main components: two weighted terms repre-
senting how well the 3-D predicted edge struc-
ture matches the current color, Epqc(F), and IR,
Eam z(F), imagery, and a weighted term repre-
senting how well the predicted sampled surface
fits the range, Eaqz(F), data. These terms may
be combined to form the overall match error:

Em(F) = acEmce(F)
+ agEmz(F) (2)
+ OzREM,R(f)

where (a¢+az+ag = 1.0). Each sensor term can
be further broken down into two weighted terms:
an omission error and a fitness error.

Ems(F) = BsEits(F)
+ (1 - ﬂS)Eom,S(}-) (3)
The subscript (S) is replaced with either C,Z,R.

The fitness error Ey;; s(F) represents how well
the strongest features match (as determined by a




threshold), and the omission error Eop, s(F) pe-
nalizes the match in proportion to the number of
model features left unmatched. Omission intro-
duces a bias in favor of accounting for as many
model features as possible [5]. The fitness error
values are summarized below and detailed in [44).

The optical fitness error represents the fidelity
of match between the 3-D edge features and the
underlying image. The process of determining
the error begins by projecting the predicted 3-D
model edges into the optical imagery. Projection
is possible because both the intrinsic sensor pa-
rameters and the pose of the target are known.
The gradient under each line is then estimated
and converted to an error normalized to the range
[0,1]. Lines with weak gradient estimates are
omitted.

The range fitness error represents how well the
predicted 3-D sampled surface model points fit
the actual range data. The error is based on the
average distance from each model point to the
corresponding nearest Euclidean neighbor. To re-
duce computation, only a subset of the range data
is examined at any one time. A bounding rect-
angle around the hypothesized target is formed
within the 2-D coordinate system of the range
image. A 3-D enclosing box is then derived by
back-projecting the rectangle into the 3-D range
sensor coordinate system. When seeking points
to match to the 3-D target model, only the data
points lying inside this box (within some margin
of error) are examined. Matched points having
too great a Euclidean distance are omitted.

2.7.3 Finding Locally Optimal Matches

Match error is locally minimized through iterative
improvement. The local improvement algorithm
samples each of the 10 dimensions of the coreg-
istration space about the current estimate. Sam-
pling step-size is important and a general strat-
egy moves from coarse to fine sampling as the
algorithm converges upon a locally optimal solu-
tion. The initial scaling of the sampling interval
is determined automatically, based upon moment
analysis applied to the current model and sensor
data sets.

A variant on local search, called tabu search, is
used to escape from some local optima [23]. Tabu
search keeps a limited history and will explore
‘uphill’ for a short duration to climb out of lo-
cal optima. In this problem, it turns out that the
regeneration of predicted target features changes
the error landscape after each move. This can,
in turn, induce local optima which tabu search
readily escapes.

When tabu search fails to find improvement in
the current neighborhood, the resulting 10 values
are returned as the locally optimal coregistration
estimate. Initial results of the search have shown
that the local optima in color, IR, and range space
do not usually coincide. By searching for the
model in both the optical and range imagery, lo-
cal optima in each will be rejected in favor of a
more jointly consistent solution.

2.8 Occlusion Reasoning

One of the main benefits of multisensor ATR is
the ability to reason about model feature occlu-
sion. Since the range sensor provides an estimated
range to the target, the following observation can
be made: having a range pixel located much closer
to the sensor than expected supports the belief
that the feature is occluded.

The addition of occlusion reasoning to the ex-
isting system was fairly simple. We modified the
system to retain the model face associated with
the sampled surface point predicted for match-
ing. Then the closest Euclidean neighbor to each
model point was found using the same method
discussed in Section 2.7.2. If the nearest neighbor
lies some fixed distance (3 meters in our experi-
ments) in front of the target, then it is labeled as
occluded.

Once the point has been labeled as occluded,
the match error for the range data is adjusted
to remove this point from the predicted target
signature. To accomplish this change, the match
error was changed as follows:

Emr(F) = PBrEfitr(F) (4)
+ (1-p8r) maX(Eom,’R(f)anc,R(F))

where E,. z(r) is a non-linear function of the ra-

tio, r, of occluded versus the total possible visible
features:

0 if r<04
EOC,R(]‘_) = (7’ - 04)/06 if 0d<r < 0.6
1 if r>0.6
(5)

Initial experiments showed it was not enough to
simply remove the features from the match that
were believed to be occluded. The matching sys-
tem quickly discovered the benefit of moving ve-
hicles completely behind a hillside, thus occluding
all of the features and sending the error measure
to zero.

Once the changes to the range error were made,
it again became obvious that we needed to remove
features from the set used in matching to the op-
tical imagery. Using the established link between




the model face and the associated sampled fea-
ture, we simply remove all lines from consider-
ation for which the associated face is occluded.
These edge features are completely neglected in
the optical error computation.

Figure 9 (see color plates) shows an example
of the multisensor matching algorithm with the
occlusion reasoning. In this image, the bottom
half of the M901 is occluded by the terrain. In
the center of the Figure are two range images,
the top has the range with a grey-scale rendering
of the vehicle and the bottom has the color image
textured over range data. The left image shows
the color image with the features determined to
be occluded in black. Similarly the IR image is
on the right with the occluded features in white.
All other features were matched.

2.9 Least-Median Squares Coregistra-
tion

The algorithm described above searches in the
space of coregistration estimates for a best match
between target model and image features. This
section describes a least-squares multisensor pose
algorithm which, given a set of corresponding
model and image features, recovers the associ-
ated best coregistration estimate. This algo-
rithm extends single sensor pose work [28; 36; 20;
38] by imposing constraints on both sensor and
object geometry.

Our target identification system does not cur-
rently include the least-squares multisensor pose
algorithm. The pose algorithm was developed
to provide a basis for an alternative form of
multisensor matching in which the globally best
least-squares coregistration would guide a search
through the space of possible discrete matches be-
tween target and image features. This proved in-
feasible given the great number of sample surface
points predicted for a target.

The multisensor pose algorithm is useful for fi-
nal highly precise refinement of the coregistration
parameters and it is intended that it should be
utilized as a final refinement for output of the
multisensor matching algorithm presented in the
previous section. There is also promise that if
extended to work with more highly structured
range features, the least-squares approach may
yet be a useful basis for a search algorithm which
operates in the space of discrete mappings be-
tween target and sensor features. Additional de-
tails on the algorithm presented here, along with
one s]uch possible extension, are described in [3;
2; 50].

2.9.1 The Least-Squares Fitting Function

The best coregistration estimate minimizes a
quadratic error of fit between corresponding ob-
ject model and sensor features.

Epis = afitErito + (1 — a5it)Epirr  (6)

The constituent parts of Ey; are illustrated in
Figure 10. The first term, Ey; ,, measures dis-
tance between corresponding optical and model
features. This term is precisely the point-to-
plane error criterion defined by Kumar [36; 38]
for computing camera-to-model pose 3. The sec-
ond, Ey;tr, is the sum-of-squared Euclidean dis-
tances between corresponding model and range
points. The edge features in the optical imagery
are found using a model-directed edge extraction
technique described in [43].

IAV. (Rchml + Tmc)

Figure 10: Illustrating distance errors which de-
fine optimal coregistration.

% After developing this measure, Kumar developed oth-
ers which are more robust but which also require additional
normalization.




The weighting term 0 < ay; < 1 controls
the relative importance of the optical and the
range data. The terms Fy;;, and Ey;, are nor-
malized between [0, 1] based upon the expected
amount of noise present in the features *, and
consequently Ejy;; also falls in this range. This
normalization allows comparison of data from
two separate sources. The exact derivation of
the least-squares fitting function and the associ-
ated iterative update equations used to minimize
the non-linear error term are presented in [51;
3].

2.9.2 Median Filtering Extension

Median filtering [49] handles outliers by fitting to
the subset of the data which minimizes the en-
semble median error value. It is a robust statistic
when there are less than 50% outliers. This is in
contrast to the mean around which least-squares
algorithms are based, where a single outlier can
radically shift the result. The subset which min-
imizes the median error will contain no outliers.
Including an outlier in a subset results in a poor
estimate of the true curve (statistical model) and,
in turn, will increase the median error.

The space of subsets is combinatoric and hence
typically large. To avoid exhaustive search, the
space is randomly sampled. Given sufficient sam-
ples, the probability of seeing at least one outlier-
free subset is very high. This yields the optimal
fit, and allows us to discard all data not accounted
for by the Gaussian assumption (i.e., outside of
two standard deviations of the best fit function,
since this will contain 98% of the data effected by
Gaussian noise).

The subsets must be at least large enough to
cover the degrees of freedom, so at least three op-
tical lines and one range point are needed. How-
ever, Kumar [37] found that selecting a minimal
number of features caused the solution to be sen-
sitive to the Gaussian noise that we assume is
overlaid onto the true data. As a consequence,
it is better to select a larger subset to stabilize
the optimal pose against noise. If we select too
large a subset size, however, we greatly reduce
our chances of selecting a subset with no outliers.
A compromise must be made between probability
and stability.

Once we have minimized the error, we need to
select a cutoff point, above which we will consider
correspondences to be outliers. We can achieve

“While a rigorous and complete noise model is not de-
veloped, the Gaussian noise assumption underlies least-
squares.

this either by selecting some a priori threshold

or by computing one based on the median. We

choose the later method. Assuming a normal dis-

tribution, we can set cutoff = (a x s)? where
min B it

$ = eriat is an approximation of the standard

deviation for a Gaussian distribution based upon
the interquartile range. Setting a to 2.0 filters
out data which lies more than two standard de-
viations above the error, so that the majority of
the Gaussian data will be retained.

2.9.3 Least-Squares Study on Controlled
Data

The synthetic optical sensor has a 4° field of view
and generates a 512x512 image; the range images,
6 pixels per meter at 500 meters. The sensors
are separated by 1 meter. Each model is located
500 meters from the sensors along the focal axis
of the optical sensor. The ground truth image
data for these tests is obtained for each sensor by
projecting the appropriate model features (lines
for optical, points for range) onto the sensor image
plane.

Algorithm tuning parameters such as error
weighting terms and convergence criteria are con-
stant throughout both experiments. The weights
in the coregistration error, A,, Ari, Wme and
Wy, are all set to 1.0. The convergence thresh-
old for Ey; is 10~%. The maximum number of
iterations is 20.

Two sets of experiments were conducted: 1)
sensitivity to noise in initial coregistration esti-
mate, and 2) sensitivity to noisy image data. Both
tests were run on four synthetic models. The
models exhibit different geometric characteristics
including planarity or lack of planarity, symme-
try or lack of symmetry, and few versus many
features. Complete results of these tests are re-
ported in [51].

In Test 1, we found that, given perfect image
data, the algorithm could reliably recover and cor-
rect coregistration given up to a 30° error in orien-
tation. The correct solution was often found even
for orientation errors as large as 50° and initial
translation errors up to 100 meters. This suggests
that, given good data, the algorithm reliably con-
verges upon the optimal set of coregistration pa-
rameters. Test II shows that, given modest image
noise (¢ = 1 for both sensors), the final rotation
error was within 1° of the correct value. With sig-
nificantly higher errors, though, (¢ = 5 for both

The weights are the combined threshold and ay;; term
described in [51]




sensors), coregistration yielded a final rotation er-
ror around 5°.

2.9.4 Least-Median Squares on Real Data

In our previous work [51], instabilities and patho-
logical behavior were found when running coreg-
istration on hand-picked features. This behavior
has been traced to outliers present in the hand-
picked data. To address this issue, median fil-
tering is used to construct outlier-free correspon-
dences.

For both of the example runs shown here, we
started with the same initial pose (shown in Fig-
ures 11a and c). The initial correspondence was
built based upon the initial coregistration hypoth-
esis. In the CCD, lines with average distance less
than 30 pixels and orientation difference less than
15° were included in the initial pose. For the
LADAR, points within 0.5 pixels in the z and
y dimensions and 10.0 meters in distance were
paired. While these values provide a relatively
small and mostly correct initial correspondence,
an enlarged initial correspondence would include
significantly more than 50% outliers and median
filtering would fail.

Figures 11a and c show the initial positioning
of the model features (shown in black) and the
data features (shown in grey). In the final re-
sults, a similar scheme is used, with the addition
that features included in the match are filled. In
the optical images, the features (both model and
data), included in the match are shown in grey,
and the unmatched features are shown in black.
The correspondence between individual features
is not explicitly shown. In Figures 11b and d,
the final results of median filtering show a gen-
erally good match, indicating the absence of sig-
nificant outliers. Notice that the LADAR points
(Figure 11d) generated by the top of the vehicle
are not included in the match, since they match
poorly.

3 Evaluating Target Identifica-
tion Results for the Fort Car-
son Dataset

This section first introduces the dataset we use
for testing. It then summarizes how well targets
are identified on 35 test cases.

3.1 The Fort Carson Dataset

In November 1993, data was collected by Col-
orado State University, Lockheed-Martin, and
Alliant Techsystems at Fort Carson, Colorado.
Over 400 range, IR and color images were
collected and this imagery has been cleared
for unlimited public distribution and Colorado
State maintains a data distribution homepage
(http://www.cs.colostate.edu/~vision).
This homepage also includes a complete data
browser for the color imagery. A 50 page re-
port [7] describes each image, vehicles present,
and ancillary information such as time of day
and weather conditions. Additional information
on the sensor calibration may be found in [33].

3.2 How Difficult is the Fort Carson
Dataset?

The Fort Carson dataset was designed to contain
challenging target identification problems requir-
ing advancements to the state-of-the-art in ATR.
We believe this goal has been met. To our knowl-
edge, only one other organization has carried out
target identification on this data, and that is the
group from MIT Lincoln Laboratory. The Fort
Carson dataset has been used in part of the eval-
uation of their own range-only ATR system [32].

The MIT group has also developed a set of
correct-recognition performance curves that allow
them to predict the best performance they can
expect to achieve for given operating parameters
(range, depression angle, noise, etc). In the case
of the Fort Carson dataset, their curve of cor-
rect recognition versus range (which translates
into a number of pixels on target for any given
angular pixel size) indicates that their ATR sys-
tem should be capable of achieving close to 100%
correct recognition on the easiest imagery of the
datasets where the vehicles occupy about 700 pix-
els. The same curve also predicted poor results on
all the other images in the Fort Carson datasets
where the numbers of pixels on target are much
smaller. Even worse performance is expected due
to the number of less than ideal conditions, such
as obscurations and unusual viewing angles.

3.3 Our Experiment Design

Thirty five distinct range, IR and color image
triples from the Fort Carson dataset were used
in this test. These image triples represent over
90% of the total target views available in the
dataset. The four targets present in these images
are: M113, M901 (M113 with missile launcher),
M60 and a pickup truck.




a. Initial Lines

b. Final Lines

Figure 11: Least-median squares results on real data.

the results using median filtering.

The overall design and flow of this experiment
is summarized in Figure 12. The upstream detec-
tion and hypothesis generation algorithms were
used to generate realistic input for the multisen-
sor matching system. However, these upstream
algorithms are not the focus of this particular ex-
periment and they were run in such as way as
to maximally exercise the multisensor matching
system. Put simply, we did not want to miss a
chance to test the identification system due to a
failure upstream. Different thresholds were used
for the color system on different vehicle arrays.

For each region-of-interest produced by the
target detection algorithm, the range boundary
probing system was run using a four target probe-
set. Since the conversion of the ROI from the
color image to the range image is dependent upon
knowing the current alignment between those two
sensors, the process was repeated three times. In
the first set, no alignment error was assumed. In
the second set, random noise in the range [0, 0.75]
was added to each alignment dimension. The last
set used noise in the range [0, 1.5].

Our goal was to find a configuration for this
probing system which gave us at least one ‘reason-
able’ hypothesis in the top five ranked hypotheses.
A reasonable hypothesis is one where the true tar-
get type is identified and the vehicle pose is within
60 degrees of correct. Using different probe-sets
for near versus distant targets and hand generated
tuning for each vehicle array, the system returned
such ‘reasonable’ hypotheses in 33 out of the 35
cases.

While we did allow upstream tuning for spe-
cific vehicle arrays, we did not allow such tuning
for the multisensor target ID system. As the fo-
cus of this evaluation, the ground rule was one
configuration for all tests. All system input pa-
rameters were set to the same values for all 35
image triples.

c. Initial Points d. Final Points

a) & b) are the initial estimates, ¢) & d) are the

3.4 How Well are Targets Identified

Table 2 presents a confusion matrix summariz-
ing how well the multisensor identification system
performed on the 35 test cases. The table shows
the majority of the targets were correctly classi-
fied (27/35 or 77%). In two of the incorrect cases,
hypothesis generation failed to suggest the correct
target type.

Table 2: Confusion matrix for Multisensor Target
Identification. Correct identification rate is 27/35
(77%). The two entries marked with “*’ are cases
where hypothesis generation failed to suggest the
correct target type: entries #14 and #29 in Ta-
ble 3.

Multisensor System ID
MI13 M901 M60 Pickup

M3 7 1
moot| 1 5 - 2
M60 1 7

True Target ID
% = -

Pickup

A detailed case-by-case breakdown is presented
in Table 3. The second column indicates the ve-
hicle shot number and vehicle array as identified
in the Fort Carson data collection report [7]. The
third column indicates the true target. The next
five columns show the performance of the prob-
ing system, with the first four being the number
of vehicle types returned out of 15 possible tri-
als run. The fifth column shows the best probing
output. A / indicates the correct target has been
identified.

The next column shows the target ID returned
by the multisensor matching system. The fifth




Imagery

¢ Fort Carson dataset.

* 35 distinct shots, 1 target / shot.

* 1 IR, Range & Color triple / shot.
* 90 % of total shots.

Ground Truth

* Target ID's, pose & sensor registration.

IR, Range & Color Image

Color Image

Color Detection
* Day & evenining training.

* Array specific sensitivity.

Range Image

Detection Boxes

5 Best Target-Pose Hypotheses

> Hypothesis Generation
* Four target probe set.
*» Some image specific tuning.

2D Imge Probes

Target Models

* M113, M901, M60 & Pickup
* M113 & M901 same class variants.

Multisensor Target ID
+ For each hypothesis:
Optimize match.
subject to 3D geometry.
* Return the best match.
* Single tuning for all runs. -

3D Target Models

~ Metrics

» Target ID Confusion Matrix.
* 3D pose recovery. statistics. -
* Case-by-case analysis.

Figure 12: Diagram of End-to-end ATR System Test.

column indicates the percentage of the target oc-
cluded in ten percent increments: blank indicates
no occlusion. The final column indicates the num-
ber of range pixels on target.

In most cases, the system correctly distin-
guishes between very different targets, i.e., M60
versus M113. It also successfully discriminates
between two variants of the same underlying ve-
hicle. The M113 and M901 are identical except
for the presence of a missile launcher mounted on
the top of the M901. In one case where these two
targets are confused, #14, the M901 is labeled an
M113 because the missle launcher is completely
obscured by an occluding tree.

Some other observations can be made looking
at the data in Table 3. One is that identification
performs perfectly on the high resolution data
from Array 5: #17 through #20. Another not
surprising observation is that even with our occlu-
sion reasoning component, performance is better
on non-occluded targets. There are 23 instances
of non-occluded targets. Of these, only 2 are mis-
identified. That represents a better than 90%
identification rate.

There are 12 occluded targets, of which 6 are
correctly identified. Thus, even with our occlusion
reasoning during matching, the identification rate
is 50%. However, a related factor is the number
of pixels on target, and of the 8 occluded targets
with more than 50 pixels on target, 6 are correctly

identified: an identification rate of 75%. While
it is risky to conclude too much from so few in-
stances, it appears that identification is breaking
down at around 50 pixels on target.

The final observations to be made are about the
performance of the multisensor system as com-
pared to the probing algorithm. In many of
the cases, the probing algorithm provided a wide
range of vehicle types to the multisensor algo-
rithm, and in only two instances was the correct
vehicle type not present. The probing algorithm
is operating at about 57% accuracy over all tests,
and about 16% on occluded vehicles. However, it
must be remembered it has been hand tuned for
each vehicle array.

3.4.1 Analysis of Pose Recovery

Table 3 does not provide information about the
pose of the best match found by either algorithm.
Since both algorithms rely on object pose to iden-
tify targets, it is essential to compare the accuracy
of the pose recovered by each. Pose can be bro-
ken down into two parts: rotation and translation.
For simplicity, only the rotation error is analyzed
here; a comparison over translation showed simi-
lar results.

A rotation error measure is formed by compar-
ing a given pose to a pre-determined ground truth
pose. The rotation error value can be thought of




Table 3: Case-by-case Breakdown of Target ID Results. The probing system required some image specific
tuning in order to generate the results shown here. The Multisensor target recognition system used the

same setting for all images.

Image Shot True Hypothesis Generation Multisensor % Target
# Array Target || M60 | M901 | M113 | Pickup | Best ID Occlusion | Size
1] S01/A01 | M60 | 3 2 6 4 M113 v - 62
2 | S02/A01 | M901 0 13 0 2 V4 Vv - 68
3 | S04/A01 | M113 3 4 4 4 Vv Vv - 54
4 | S05/A01 | Pickup 0 6 7 2 M113 Vv - 46
5 | S06/A02 M60 8 4 0 3 Vv Vv - 144
6 | S07/A02 | M901 0 15 0 0 Vv Vv - 107
7 | S08/A02 | M113 || 4 1 10 0 v v - 91
8 { S09/A02 | Pickup 0 0 0 15 Vv v - 75
9 | S10/A03 M60 5 4 0 6 Vv Pickup - 129
10 | S11/A03 M901 4 4 3 4 M113 M60 - 130
11 | S12/A03 | M113 0 0 13 2 Vv Vv - 113
12 | S13/A03 | Pickup || 0 0 6 9 v v - 83
13 | S14/A04 M60 7 1 4 3 M113 Vv 20 181
14 | S15/A04 M901 0 0 7 8 M113 M113 60 40
15 | S16/A04 M113 0 0 9 6 Pickup Pickup 50 25
16 | S17/A04 | Pickup | 0 1 2 12 v v - 84
17 [ S18/A05 ] M60 | 15 | 0 0 0 v v T 683
18 | S19/A05 M901 0 13 2 0 Pickup v - 469
19 | S20/A05 | M113 || o© 0 15 0 v v | 601
20 | S21/A05 | Pickup | 1 0 2 12 v v - 246
21 | S22/A06 M60 5 0 6 4 M113 Vv 10 180
22 | S23/A06 | M901 | 0 15 9 9 V. v 10 63
23 | 524/A06 M113 0 0 15 0 V4 Vv - 85
24 | $25/A06 | Pickup || 0 0 5 10 N v - 61
25 | S26/A07 M60 5 5 5 0 M901 M901 10 101
26 | S27/A07 | M901 4 9 0 2 Vv M60 10 120
27 | S28/A07 | M113 | 9 1 5 0 v v | o122
28 | S29/A08 M60 7 0 8 0 Pickup Vv 40 143
29 | S30/A08 M901 1 0 2 12 Pickup Pickup 80 20
30 | S31/A08 M113 1 6 8 0 M60 M60 10 45
31 | $32/A08 | Pickup || 0 3 0 12 v v | 118
32 | S33/A09 M60 3 0 7 ) M113 V4 10 95
33 | S34/A09 M901 2 8 0 ) M35 Vv 60 80
34 | S35/A09 | M113 0 0 15 0 Vv Vv - 159
35 | S36/A09 | Pickup 0 2 3 10 M113 Vv - 48

as the amount of rotation required to rotate from
estimated orientation to the ground truth orien-
tation. For instance, a 30° error means a given
pose estimate is 30° from the true orientation.
Using this measure, a distribution is formed from
the output of the hypothesis generation phase and
also from the output of multisensor target identi-
fication algorithm.

Figure 13 shows the histogram comparing ori-

entation error for the best target match in each of
the 35 image triples reported in Table 3. Observe
from the leftmost pair of bars in the histogram
that multisensor matching increases four fold the
number of matches within 5° of ground truth. It
increases by a factor of two those between 5° and
10° of ground truth.

Hypothesis generation sometimes confuses ve-
hicle fronts and backs. Note the right hand most
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Figure 13: Difference between estimated and true 3-D target orientation before and after running of
the multisensor identification algorithm. Bars labeled ‘Before Target ID’ indicate pose estimates coming
out of the hypothesis generation algorithm, and those labeled ‘After Target ID’ are after multisensor
matching has been run. Frequency is the count of trials with pose estimates differing from ground truth

by the indicated amount.

histogram bars. This is in part because the al-
gorithm relies solely upon the occluding contour.
Currently, multisensor matching is unable to re-
verse orientations by 180° and these errors there-
fore persist in the final matches.

Before and after pose recovery results for a
larger set of runs are shown in Figure 14. Where
as in Figure 13, only the best match results are
presented, Figure 14 shows before and after re-
sults for all runs where the initial target hypoth-
esis is of the correct type and the pose within 90
degrees of the true orientation. As can be seen,
the multisensor algorithm is able to substantially
correct erroneous pose estimates.

The reliability of any model-based target iden-
tification procedure is clearly related to how well
pose is recovered: without accurate pose the pair-
ing of predicted model features to image measure-

ments will be erroneous. For the most part, 23
out of 27 best matches, the multisensor algorithm
recovers the true pose to within 20°. Because mul-
tisensor matching improves the pose estimates, it
achieves more reliable target identification.

3.5 Two Examples

Before and after multisensor matching results for
two specific images are shown in Figures 15 and 16
(see color plates), shots 20 and 26 repectively. For
each of these images, the color detection algo-
rithm successfully found each target. The pose
hypothesis algorithm then provided a sequence of
possible target type and pose hypotheses. The
multisensor matching algorithm then refined the
estimate to correct for pose and alignment er-
rors. The results illustrated below show the best
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Figure 14: Difference between estimated and true
3-D target orientation before and after running of
the multisensor identification algorithm.

match found by the multisensor matching algo-
rithm. Recall that the best match is that which
minimizes the match error defined in Section 2.7.2
and Section 2.8.

Figures 15a and 16a (see color plates) show the
initial starting hypothesis for the matching algo-
rithm. Starting from the top left corner of the
image and moving clockwise, each image chip rep-
resents either different sensor-to-model relation-
ships, or the sensor-to-sensor alignment. The up-
per left image shows the color image with the pre-
dicted model edges drawn in red and blue (red
represents a non-omitted model feature). The
next image shows the model in the initial orien-
tation, followed by the IR image with the lines in
white and black (black is non-omitted).

In the bottom row, the leftmost image shows
the wireframe model in relation to the range data.

-The range data has been texture mapped with
the color imagery, which allows the alignment be-
tween sensors to be visually assessed. The middle
image shows the predicted model features in rela-
tion to the range sensor data. The blue boxes are
data points and the red and yellow are predicted
model points (red is non-omitted). The rightmost
chip represents the range data with an IR texture
map.

Figures 15b and 16b (see color plates) show the
resulting pose and alignment after the multisen-
sor matching system has refined these transforma-
tions. As can be seen from careful examination of
the before and after imagery, the matching algo-
rithm was able to substantially improve upon the
model-to-sensor as well as the sensor-to-sensor re-
lationships.

The multisensor matching algorithm took
roughly 45 seconds to converge from the initial
to final estimates for Shot26. Shot20 took longer,

at 120 seconds, due largely to the greater num-
ber of range data points on target. Shot20 re-
quired 10 iterations of the local search algorithm
and roughly 700 match error evaluations.

3.6 Removing a Bias for Small Targets

Our heuristic match evaluation function, the
match error, is carefully normalized so as to not
vary with target size. By design, the measure re-
turns a value between zero and one regardless of
whether the target is tiny (10 pixels on target) or
large (1,000 pixels on target). A side effect of this
normalization is that smaller target models tend
to score slightly better than large target models.
Speaking broadly, it is probably a consequence of
the fact that smaller numbers of features are more
likely to accidentally fit image clutter, including
internal portions of larger targets.

To correct for the small target bias, i.e., the
bias for pickup truck matches over M60 matches,
a final linear adjustment is made to match er-
rors based upon the predicted number of pixels
on target. To perform this adjustment, the largest
(Smaz) and smallest (Sy,;,) expected number pix-
els on target are determined for all the targets
combined. Then, match errors for specific target
instances are assessed a penalty proportional to
match size s measured in pixels: smaller target
matches incur a greater penalty.

Ejs(F) = ws(s)Epm,s(F) (7)
(78 - 1) 8 + Smin — Y5 Smaz (8)

Smin - Smax
The scaled match error Ey 5(F) for sensor S is
adjusted by weight wgs(s), where

ws(s) =

ws(Smin) = s
vs = 1.0

In the experiments reported above, the penalty
for the smallest matches s is 1.5, 1.5 and 1.1 for
the range, color and IR sensors respectively. This
simple modification has dramatically improved
identification by correctly classifying the M60 7
times instead of 2 times without scaling. With
the correction just explained, the system shows
little or no bias in favor of smaller versus larger
targets.

3.7 General Approach & Relative Sen-
sor Weighting

A variety of thresholds, weights and step-size pa-
rameters are associated with the match error and




the tabu-search process. Our general approach to
tuning these parameters is to begin with what ap-
pears to be a ‘common-sense’ choice, and then to
not vary the choice unless there is evidence of a
problem. It has not been our goal in these early
phases of work to explore the myriad possible tun-
ing refinements.

Our one ground rule has been that whatever
tuning we select, it must remain constant over the
entire dataset being evaluated. Consequently, all
the identification results reported above are for a
single tuning of the multisensor target identifica-
tion system. Since we have not yet explored the
space of possible tunings, it is likely that a better
tunings exists, and future refinements will proba-
bly lead to more robust target identification.

One set of weights is of special interest: the
relative weight assigned to each sensor. All our
experiments to date use a 50%, 30% and 20%
weighting for range, color and IR respectively.
However, changing these weights, for instance
leaving out a sensor entirely, would allows us to
assess the comparative value of sensors in terms
of more or less reliable target identification.

We hope in the near future to begin to sys-
tematically explore the importance of each sen-
sor by varying these weights and noting changes
in performance. Our experience to date, given
only a small amount of study, suggests that both
the range and color data are important. There
is less evidence that IR is helping. However, too
much should not be read into this statement. Our
current use of IR is somewhat naive: computing
gradients rather than using a statistical measure
of target/background differences. Enhancing our
match quality measure for IR must go hand-in-
hand with our aim of more thoroughly studying
the relative value of each sensor.

4 Using Terrain Context

Terrain context plays a critical role in determining
where targets can appear, how they will appear,
what they may be doing, and perhaps most ob-
viously, how far they are from a scout vehicle. A
long-term goal of the RSTA project has been to
introduce constraints derived from the analysis of
the terrain. Examples in which terrain context is
used include a terrain-guided search process de-
veloped by Lockheed-Martin  This algorithm di-
rects the RSTA sensor suite to survey first those
regions of a scene most likely to contain targets.

5Lockheed-Martin’s Chapter 3 of this book includes ad-
ditional detail on terrain-guided search.

Another use of terrain is to derive range-to-
target estimates. It may not at first be apparent,
but most of the ATR algorithms used in RSTA
require initial range-to-target estimates. These
estimates are required to scale the templates and
probe-sets used for recognition. This is true of
the LADAR probing algorithm used above for
hypothesis generation. Of course, when using
LADAR, the range data itself provides the range-
to-target estimate. More importantly, the IR
detection and recognition systems developed by
Lockheed-Martin and Hughes [19] require such an
estimate. When working with IR or color imagery,
it is less obvious how to generate good range-to-
target estimates. Such information is not explic-
itly present in the optical imagery itself.

In the current RSTA system, range-to-target
estimates for any pixel in an image are derived
from the Digital Elevation Map (DEM) of the ter-
rain. So long as the DEM is accurately registered
to the optical imagery, it is a simple matter to
intersect a ray passing through a given pixel with
the terrain map and record the distance. The dis-
tance from the vehicle to the point of intersection
with the terrain is the estimated range-to-target
for a target centered at this pixel. However, there
is an obvious weakness in this approach. Small er-
rors in registration between the DEM and imagery
can produce wildly incorrect range-to-target esti-
mates.

On the current UGV vehicles, human interven-
tion is required to accurately refine these esti-
mates. Our project has begun work on automat-
ing this process. Results are presented for data
collected at the UGV DEMO C site showing how
automated matching of features extracted from
the DEM to features extracted from imagery can
register the DEM to imagery.

4.1 Vehicle Orientation Correction

When one of the SSVs using GPS and inertial
guidance stops, small errors in pointing angle lead
to large errors in pixel registration between im-
agery and the DEM. Orientation estimates can
be off by one or more degrees [48]. The resulting
uncertainty precludes terrain guided visual search
and target recognition. To correct this uncer-
tainty in pointing angle, the SSV transmits im-
agery from a sweep of the terrain to the opera-
tor work station. The operator then hand selects
corresponding features on the stored terrain map
and in the imagery. These corresponding con-
trol points enable the SSV to refine its estimated
pointing angle relative to the terrain.

To automate this process, a matching system
is provided features extracted from the DEM and




features extracted from the imagery. The match-
ing system establishes a ‘best’ correspondence
between the two sets of features. Several dif-
ferent approaches to matching are being inves-
tigated for this problem. Foremost are a fam-
ily of local search algorithms which find, with
arbitrarily high probability, the optimal corre-
spondence mapping and geometric transforma-
tion between a model and image data [10; 5;
6]. Two other techniques are also being stud-
ied. The first is a form of Genetic Algorithm
called a ‘Messy GA’ [24]. The second is the Haus-
dorff matching algorithm developed by Hutten-
locher [30}, who has graciously provided us with
the code for this algorithm.

Using any of these three approaches, the basic
outline of the automated orientation correction
procedure is the same:

e Render 3-D terrain using the estimated vehi-
cle pose.

e Extract matchable features from the ren-
dered terrain and actual imagery.

e Match the two sets of features.

e Use matched features in place of hand se-
lected control points to correct the orienta-
tion estimate of the vehicle.

While the very specific problem of feature
matching for orientation correction does not ap-
pear to have received much attention in the liter-
ature, there has been prior work on terrain fea-
ture matching which deserves mention. Match-
ing of line segments representing dominant image
features was proposed by Clark [18]. Levitt [40]
proposed a way to select salient landmarks from
terrain data [40] for navigation. Stein [21] uses
panoramic horizon curve matching for vehicle lo-
calization. Thompson and Sutherland [56; 57;
55 have built a sophisticated expert system with
a domain specific image feature extraction algo-
rithm for abstracting structural terrain descrip-
tions.

These prior efforts typically address the gen-
eral problem of vehicle localization anywhere on
a map, while the work presented here considers
the more constrained problem of orientation cor-
rection. That said, the work here places a higher
premium on precise matching of features from sin-
gle narrow FOV imagery to support accurate ori-
entation correction.

4.1.1 Terrain Rendering

The 5m digital elevation map (DEM) for the
Demo C test site was obtained from Lockheed-
Martin. This site was selected because test im-
agery taken directly from the SSV is available
along with ground truth indicating vehicle po-
sition and pointing angle relative to fixed tar-
gets [47].

A terrain-rendering system has been developed
using Open-GL which simulates the FOV of the
CCD sensor used on the SSV. A simple lighting
model is used and terrain is rendered from posi-
tions at which the vehicle actually acquired im-
agery. The vehicle pointing angle is derived from
recorded vehicle and target positions: the tar-
gets are other military vehicles. Because target
ground truth is being used to derive pointing an-
gles, only images with targets near the image cen-
ter are used. Figures 17a and 17b show two ren-
dered terrain images for which matching is tested
below.

4.1.2 Extracting Terrain and Image Fea-
tures

The local search and messy GA matching algo-
rithms match sets of line segments. For this
problem, model and data segments are extracted
from the rendered DEM and actual images respec-
tively. An in-house implementation of the Burns
algorithm [16] 7 is used to extract the line seg-
ment features. High frequency texture in these
scenes prevents horizon features from being ex-
tracted unless the imagery is first smoothed: a
7x7 smoothing kernel has been used here. Even
with smoothing, the horizons are still sometimes
difficult to extract, and significant fragmentation
occurs. Figures 17c and 17d show the images
themselves along with the segments extracted by
the Burns algorithm.

4.1.3 Image Feature Extraction on the
SSv

Before saying more about matching extracted line
segment features, it is worth noting that line ex-
traction code was installed on the SSV vehicles.
This was done to support horizon line orienta-
tion corrected carried out by an operator without
the need for transmitting large amounts of data

"This version has a simple single  Glyph
interface and is publicly available from our
FTP site: ftp.cs.colostate.edu in directory
/pub/vision/khoros-v1.0.5/CSUtools/csuExtrLn




between the vehicle and the operator worksta-
tion (OWS). Colorado State provided Lockheed-
Martin with an implementation of the Burns Line
Extraction algorithm specifically tailored for use
on the SSV and Lockheed-Martin integrated this
software with the RSTA executive. The algorithm
extracts the segments from imagery captured by
the vehicle, sorts the features on the vehicle based
upon a saliency measure, and then encodes the
best 256 (or 1024) for transmission back to the
OWS via the packet switched radio system.

Recognition of the need for this ‘iconic’ means
of representing horizon features grew out of an
analysis of how long it would take to transmit raw
imagery for by-hand orientation correction at the
OWS. With three vehicles all stopping to perform
wide-area surveillance, it was estimated that dur-
ing Demo II, it could take upwards of 15 minutes
to transmit back all the required imagery for one
round of orientation correction for 3 vehicles. It
was decided that it is operationally unacceptable
to introduce a 15 minute delay into operations
each time all the vehicles stop to perform surveil-
lance. To overcome this problem, we realized a
person could designate control points to guide the
orientation correction operation by looking at the
‘iconic’ terrain representation provided by a set
of straight line segments. Moreover, the time re-
quired to transmit a set of straight line segments
is nearly an order of magnitude less than that
required to ship a raw image. Hence, the 15 min-
utes may be reduced to just under 2 minutes: a
much more reasonable number from an operations
standpoint.

4.1.4 Matching Using Local Search

A complete explanation of local search match-
ing appears in Beveridge’s dissertation [5] and 3-
D matching results appear in [8]. A controlled
performance analysis of 2-D matching appears
in [9]. To briefly review the approach, an itera-
tive generate-and-test strategy moves from a ran-
domly selected initial match to one that is locally
optimal. A global least-squares fitting process al-
ways aligns model and data for any correspon-
dence tested. Thus, global geometry implicitly
directs search. A match error takes account both
of spatial fit and omission: how much of the model
is un-matched.

Search is conducted over a space of correspon-
dence mappings C: C is the powerset of pos-
sibly matching features S. Most other algo-
rithms consider one-to-many matches [27] while
our C includes many-to-many matches. With-
out many-to-many mappings, properly match-

ing piecewise approximations to curves with non-
coincident breakpoints is impossible. This point is
important here because horizon lines involve such
non-coincident breakpoints.

While at first the initialization of search from
randomly chosen matches may seem foolish, it
is a strength of the approach. By running
multiple trials from independently chosen initial
matches, the probability of seeing the best (or
near best) at least once may be made arbitrarily
high. Past experience has demonstrated 100 tri-
als is adequate to solve most difficult problems [8;
9]. Another benefit of multiple trials is the struc-
ture and frequency of alternative solutions tells us
much about the difficulty of a particular problem.

Not all possible pairs of line features need be
considered in matching. Two constraints limit the
space of possible matches between horizon model
and image line segments. First, it is safe to as-
sume the horizon lies somewhere in a band that
is half of the height of the image centered about
the true position. Second, the relative orientation
between segments must be less than 17 degrees
for them to match. With these constraints, the
sets of potentially matching features is still large:
1183 for Image 1 and 1577 for Image 2. The re-
sulting search spaces C contain 2'!83 and 21577
states respectively.

To explore the space of possible matches, 500
trials of subset-convergent local search were run
on each problem. The best match found in
each case is shown superimposed in black in Fig-
ures 17e and 17f. In both cases, visual inspection
shows these to be essentially correct matches. For
Images 1 and 2, the best matches were found in
a single trial with probabilities 0.056 and 0.036
respectively. Based upon this probability, it fol-
lows this match may be found with better than
95% confidence running 59 and 90 trials respec-
tively. Being conservative, 100 trials is more than
sufficient.

These are large problems, in terms of search
space, for local search matching. To find these
matches reliably, the current C implementation
running on a Sparc 20 requires on the order of
20 minutes for Image 1 and an hour for Image 2.
Clearly, either some domain-specific tuning or use
of parallel hardware is required to bring run-times
down. Both of these are very reasonable options
for future work. Use of a better feature extraction
algorithm would dramatically simplify the combi-
natorics, and parallel local search is trivial due to
the independence of trials.
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Figure 17: Results of Local Search Matching on Two Horizon Images




4.1.5 Matching With a Messy Genetic Al-
gorithm

A messy genetic algorithm is one which can grow
and shrink the ‘chromosomes’ which represent
states in a search space. In practical terms, this
means the strings representing individuals in the
population can vary in size. For matching, the
strings are made up from pairs of model and data
line segments. The worth of any given string is the
same match error used above by the local search
procedure. The match error is defined for all pos-
sible combinations of model and data features.

Messy genetic algorithms are initialized with
small strings of high relative value. For a match-
ing problem with n potentially matching pairs of
model and data segments, on the order of n triples
of model and data line segments are introduced
into the initial population. Triples are built us-
ing proximity constraints to avoid enumerating all
n® possibilities. These triples are then ranked by
match error. Triples with low match error rise
to the top of the population and are favored in
subsequent recombination operations.

In the recombination phase of the messy GA,
strings with better fitness values, i.e., low match
error, are more likely to be chosen. The combina-
tion operator takes two parent strings, cuts each
parent at a random point to form four substrings,
and creates two new strings by merging substrings
from different parents. After recombination, one
of the two merged children is selected at random
and inserted back into the population. The pop-
ulation is maintained in sorted order from best
to worst, and after insertion, the worst string is
dropped from the population.

Because the match evaluation function favors
larger strings of consistent paired features, the
overall string length in the population tends to
increase. In order to force a bounded run-time
on the messy GA, after a set number of recom-
binations, the overall population size is reduced
by dropping the worst individual. The algorithm
terminates when the population size drops below
a preset threshold: ten strings in the experiments
run here. The messy GA used here is also a hy-
bridized form of genetic algorithm in the following
sense: local search is used sparingly to improve
individuals within the evolving population.

Early results suggest that the messy GA is per-
forming much better than the random starts local
search algorithm. Qualitatively, it has expanded
the practical threshold on the size of problems be-
ing solved. The messy GA is reliably solving large
problems, including horizon problems similar to
those shown in Figure 17, with over 6,000 pairs
of potentially matching features. This is three

times as many pairs as the largest problem solved
using random-starts local search. For these larger
problems, the messy GA requires on the order of
1 hour on a Spar 10. The messy GA has not
yet been tested on the exact same set of pairs for
used in the local search results shown in Figure 17.
However, based upon the performance with larger
problems the messy GA should solve the smaller
problems in several minutes.

4.1.6 Matching with the Hausdorff Metric

A modest effort was made to match horizons us-
ing the Hausdorff metric using a software package
graciously provided to us by Huttenlocher [30].
Two binary images are input to the system where
‘on’ pixels represent local edges in the imagery.
We used local edges extracted from the thresh-
olded (sky/ground) rendered terrain and from the
grey-scale imagery.

Initially, we were optimistic about Hausdorff
matching, since the use of edge images rather than
extracted straight line features ought to make rep-
resenting curved horizons easier. However, our
efforts quickly ran into problems. We learned
through the optimal transformations found by lo-
cal search matching that there were small scale
changes (on the order of 5%) between our ren-
dered terrain and actual images. These are due
to imperfect sensor calibration 8. There were also
small rotations due to the vehicle being parked
on irregular ground. The Hausdorff system ex-
haustively samples over possible scales and rota-
tions, and configuring it to account for these vari-
ations slowed it down considerably: very roughly
speaking run-times were comparable to the ran-
dom starts local search.

A greater problem with matching horizons us-
ing the Hausdorff metric involved how to pre-
select the desired match quality. The horizon line
images have a lot of edge clutter under the true
horizon. This clutter can easily fall within the
matching threshold and lead to matches of ‘qual-
ity’ comparable to the true match. More study
and refined tuning might clear up these problems,
but in our initial tests the system often missed
the true horizon. While these initial experiences
were not encouraging, it is critical to understand
that we did not devote a great deal of effort to
overcoming our initial problems. Consequently,
it would be quite unfair to conclude too much.

8Such changes in scale are not a problem for the local
search matching, which best fits the model to the data sub-
ject to 2-D rotation, translation and scale. As suggested,
the optimal matching recovers the scale change between
rendered terrain and imagery.




In future, perhaps in collaboration with Hutten-
locher [30], we hope to devote the time and energy
to conduct a more thorough study.

4.2 Automated Orientation Correction
Tests on Demo C Site Data

To study the ability of the full system described
above to improve vehicle orientation estimates,
an early test-of-concept experiment has been con-
ducted for a single vehicle placement in a data col-
lection conducted at the Lockheed-Martin Demo
C site in September of 1994. The imagery was
collected to test RSTA target recognition algo-
rithms. Fortunately, sufficient ground truth data
was collected to allow this same dataset to serve
as a testbed for automated orientation correction.

For this vehicle placement the vehicle position
is known using the SSV GPS system. The vehi-
cle orientation has been recovered by measuring
pointing angles to surveyed points on the test site.
To test the ability of automated feature match-
ing to recover true vehicle pointing angle, these
ground truth estimates are perturbed in a con-
trolled fashion to generate 27 estimated orienta-
tions. The precise perturbations are: pan angle
—2, 0 and 2 degrees, tilt angle —1, 0 and 2 degrees,
and roll angle —5, 0, and 5 degrees.

For all 27 cases, the DEM terrain was rendered,
model features were extracted from this rendered
image, and these were matched to the image fea-
tures. The corresponding features returned by
local search matching were used to update the
vehicle orientation estimate. The initial orienta-
tion estimates are off by up to 7 degrees, while
the recovered orientation estimates are never off
by more than 0.8 degrees. The average difference
from ground truth after orientation correction is
about 0.5 degrees.

5 Summary

Colorado State, with its team members Alliant
Techsystems and the University of Massachusetts,
has built an end-to-end target identification sys-
tem. This research testbed has demonstrated
what we consider to be a qualitative advance in
the the state-of-the-art for ground-based, multi-
sensor ATR.

In particular, we have demonstrated the value
of developing target signature predictions on-line
to fit specific scene contexts. Prediction exploits
known collateral knowledge such as time-of-day.
Prediction also infers information about target
occlusion from the range data. Within the tar-

get verification module, iterative use of the pre-
diction algorithm develops precise scene specific
target signatures. These capabilities have been
demonstrated over 90% of the available target in-
stances in our Fort Carson dataset, and target
identification rates are above 90% for unoccluded
targets. More importantly, for occluded targets
and low resolution targets (100 pixels on target),
our system is performing better than any other
system known to us.

We have also demonstrated the value of color
as a cue for target detection. Unlike most IR
detection algorithms, color detection requires no
collateral knowledge about range to targets. It
does, of course, presuppose daytime operations
and it requires training imagery. The success of
color target detection has two short term impli-
cations. First, the underlying multivariate clas-
sification algorithm is equally applicable to other
forms of multivariate data, such as multispectral
IR or polarized E-O imagery. Second, the tech-
nology demonstrated on the SSV vehicles could
be immediately used for a remote sentry where
training takes place at the time of deployment.

Overall we have tried in this project to balance
basic research and technology demonstration, and
much of what has been demonstrated rests upon
new algorithms. At many points in the develop-
ment of the target identification system, choices
had to be made between alternative paths. In
most cases, the simplest or most obvious path
was followed and the examination of alternatives
put off to a later date. In so doing, we accom-
plished our most important goal: demonstrating
the value of on-line feature prediction by showing
that a complete system could solve difficult real
world problems. However, since we have post-
poned careful study of many critical decisions, it
is important that work continues on systems such
as ours.
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a. Image with ROI boxes overlaid b. Summed values from which ROIs are derived

Figure 2: Color Detection Example in UGV Data from Demo C Test Sit

Figure 6: Sample Screen Images of the RangeView System




a. Initial Coregistration

b. Refined Coregistration

Figure 15: Shot20 Multisensor Target Matching Results

a. Initial Coregistration

b. Refined Coregistration

Figure 16: Shot26 Multisensor Target Matching Results




